Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks

Tyler Sours, # Anjli Patel, # Jens Nørskov, Samira Siahrostami,* and Ambarish Kulkarni*

ABSTRACT: It has been well-established that unfavorable scaling relationships between *OOH, *OH, and *O are responsible for the high overpotentials associated with oxygen electrochemistry. A number of strategies have been proposed for breaking these linear constraints for traditional electrocatalysts (e.g., metals, alloys, metal-doped carbons); such approaches have not yet been validated experimentally for heterogeneous catalysts. Development of a new class of catalysts capable of circumventing such scaling relations remains an ongoing challenge in the field. In this work, we use density functional theory (DFT) calculations to demonstrate that bimetallic porphyrin-based MOFs (PMOFs) are an ideal materials platform for rationally designing the 3-D active site environments for oxygen reduction reaction (ORR). Specifically, we show that the *OOH binding energy and the theoretical limiting potential can be optimized by appropriately tuning the transition metal active site, the oxophilic spectator, and the MOF topology. Our calculations predict theoretical limiting potentials as high as 1.07 V for Fe/Cr-PMOF-Al, which exceeds the Pt/C benchmark for 4e ORR. More broadly, by highlighting their unique characteristics, this work aims to establish bimetallic porphyrin-based MOFs as a viable materials platform for future experimental and theoretical ORR studies.

Oxygen electrochemistry in the form of oxygen reduction reaction (ORR, for fuel cells) and oxygen evolution reaction (OER, for water electrolyzers) lies at the heart of an environmentally sustainable hydrogen-based economy. However, widespread adoption of these technologies has been limited due to the high cost and thermodynamic losses associated with ORR and OER electrocatalysts (referred to as OXR). Despite large research investments, only modest improvements have been achieved in catalyst performance over the past decade; the best catalysts show onset potentials that deviate ~0.3–0.4 V away from the ideal value (i.e., 1.23 V_{RHE}). These losses have been attributed to the unfavorable scaling between the binding energies of OXR intermediates, in particular *OOH vs *OH. Although recent discoveries of low-cost alternatives are encouraging, it is likely that their performance is also constrained by similar intrinsic limitations.

Despite slight material-specific variations, the robustness of the *OOH vs *OH linear correlation across different materials and computational methods is well-established. Specifically, a slope of 0.9–1.0 is observed (due to the single bond with the surface) with an intercept of 2.8–3.2 eV (due to the peroxyl bond in *OOH). Designing materials that circumvent this linear scaling relationship is crucial for the development of the next generation of OXR electrocatalysts.

A promising strategy toward this goal is the confinement of *OOH within a 3-D active site environment, which has been demonstrated for a few model systems and homogeneous molecular catalysts. For instance, Rossmeisl et al. have shown that diporphyrin motifs are capable of facilitating *OOH dissociation via two closely spaced binding sites. This approach bypasses the limitations imposed by *OOH scaling in favor of the less restrictive dissociated *O + *OH pathway. Following some of the thermodynamic optimization guidelines discussed by Calle-Vallejo and colleagues, we aim to preferentially stabilize *OOH (relative to *OH) by tuning the surrounding active site environment.

Similar to the cofacial Pacman molecules, Figure 1 shows a related model system consisting of two transition metals (TMs). Specifically, a Fe/N-doped (TM$_2$ = Fe) graphene sheet is placed in close proximity with a TM porphyrin molecule (TM$_1$ = Fe, Co, and Ni). The Fe–OH center embedded in the graphene acts as an inactive spectating species that preferentially stabilizes TM$_1$–*OOH via hydrogen bonding interactions. An additional stabilization of 0.2–0.35 eV is observed for *OOH at distances of ~7.0 Å (using the
In the remainder of this work, we use periodic density functional theory (DFT) calculations to show that bimetallic porphyrin-based, mixed-linker MOFs can be designed to preferentially stabilize *OOH. Specifically, by using a combination of active and oxophilic transition metal cations, we leverage the 3-D pore structure of MOFs to spatially orient the porphyrin binding sites and circumvent the scaling relations. We consider the full four-electron (4e) associative reduction pathway to water and the partial two-electron (2e) pathway to hydrogen peroxide (further details are presented in the Supporting Information). It should be noted that alternative mechanisms have been reported for some M–N₄ catalysts under certain conditions.⁴⁶–⁵⁰ However, an exhaustive investigation into all possible mechanistic pathways is beyond the scope of this work. The theoretical limiting potential (U_L), defined as the highest potential at which all reaction steps remain thermodynamically downhill, is used to evaluate electrocatalytic performance. Although U_L is determined entirely from thermodynamics, it has been shown to correlate with ORR activity.⁵

Figure 2a shows the structure of PMOF-Al,⁴⁷,⁵¹ which consists of TCPP ligands (TCPP = tetrakis(4-carboxyphenyl)-

Figure 1. Preferential stabilization of *OOH relative to *OH at different distances compared to the noninteracting system for various active sites (TM₁ = Fe, red; Co, light blue; Ni, dark blue) with an oxophilic Fe–OH spectator (TM₂). $\Delta \Delta G_{\text{OOH-OH}} = \Delta G_{\text{OOH-OH}} - \Delta G_{\text{OH-OH}}$, where $\Delta G_{\text{OOH-OH}}$ represents the difference between the *OOH and *OH binding energies at various TM₁–TM₂ distances and $\Delta G_{\text{OH-OH}}$ represents the difference between the *OH and *OH binding energies for the noninteracting systems (i.e., at large TM₁–TM₂ distances). The inset shows active TM₁–OOH stabilized by hydrogen-bonding interactions with TM₁–OH spectator embedded in graphene.

BEEF-vdW²² functional) compared to the noninteracting system (i.e., at large separations). Validation with other functionals (e.g., RPBE,²³ BLYP,²⁴,²⁵ B3LYP,²⁶ and HSE06²⁷,²⁸ with Grimme’s D3BJ²⁹–³¹ dispersion correction) show that the stabilization (1) is not an artifact of using a specific functional, (2) is not dominated by van der Waals interactions (Figure S1), and (3) changes the TM₁–O bond order affecting both the slope and the intercept of the scaling lines (see Figure S2). The preferential stabilization of *OOH relative to *OH arises due to the favorable confined geometry, which provides a design principle to guide the development of active OXR catalysts.

This finding leads to an intriguing question: can we design other materials that leverage favorable spatial orientations of binding sites to circumvent OXR scaling relations? Although related concepts have been proposed,³²,³³ to the best of our knowledge, no heterogeneous catalysts have been experimentally proven to take advantage of these effects for ORR. Within the field of electrochemistry, it is critical to translate these strategies to an experimentally synthesizable and industrially scalable class of materials.¹²

Metal–organic frameworks (MOFs), a class of nanoporous materials consisting of metal nodes interconnected by organic linkers, are uniquely attractive due to their experimentally realizable diversity of active sites, 3-D porous chemical environments, and topologies.³⁴–³⁶ Although MOF electrochemistry is a relatively nascent direction, a variety of common MOFs, such as Co-PMOF-Al,³⁷ PCN-223(Fe),³⁸ PCN-226-(Co),³⁹ and Ni-HAB⁴⁰ show intrinsic ORR activity. The experimental onset potentials reported for these MOF systems range from 0.7–0.83 V, which is comparable with other promising catalysts. Progress in MOF electrocatalysis, including possible challenges associated with MOF stability and charge transfer, has been summarized in a number of recent reviews.⁴¹–⁴⁵
porphyrin) stacked on top of each other to form a 3-D structure connected via a 1-D Al-oxide chain. PMOF-Al is water stable and has been shown to be experimentally active for ORR.37 The spacing between the two linkers is \(\sim 6.7 \, \text{Å} \), which compares well with the favorable region in Figure 1. As different linkers can be incorporated in MOFs during synthesis or using postsynthetic methods,52–54 we used DFT calculations to explore mixed-linker PMOF-Al configurations consisting of alternating TM1/TCPP and TM2/TCPP linkers (TM1 = Cr, Mn, Fe, Co, Ni; TM2 = Cr, Mn, Fe). Pourbaix diagrams are used to determine the coverage and oxidation states of the TMs while allowing simultaneous binding on both sides of the linker (Figure S3). All possible spin combinations are explored to determine the lowest energy electronic structure for each TM (Table S1). Entropic corrections are calculated using the harmonic approximation (Table S2), and solvation contributions are estimated using VASPsol.55 The solvent isosurface (Figure S4) confirms that the solvent penetrates the MOF cavity. Other solvation approaches are possible66 but are beyond the scope of this work. The calculated absolute and relative solvation effects are summarized in Table S3.

Figure 2b shows the DFT-calculated free energy diagram for the Co active site in monometallic and bimetallic PMOF-Al using the TPSSh-D3BJ functional. The theoretical limiting potential for the molecular Co/TCPP analogue (\(U_L = 0.52 \, \text{V} \)) is consistent with the monometallic Co/PMOF system (\(U_L = 0.59 \, \text{V} \), blue). Our calculated limiting potentials agree reasonably with the experimentally measured onset potentials (0.75 V),37 further confirming the suitability of the computational protocol. Similar calculations with RPBE-D3BJ predict incorrect spin states and TM geometry, while the HSE06-D3BJ functional underpredicts binding energies for Co/TCPP and Fe/TCPP. These findings are inconsistent with experimental results and are not discussed further (see the Supporting Information for details). Detailed benchmarking of different functionals (e.g., \(\omega B97^7,58 \) MN1S,59 and others62) with coupled cluster theory and/or multireference methods for various transition metals is beyond the scope of this work.56,61–63

Compared to Co-PMOF-Al with no spectator, Figure 2b shows that the presence of an oxophilic spectator (Fe−OH, green) improves the predicted activity. For instance, the theoretical limiting potential for the bimetallic Co/Fe−OH/PMOF-Al catalyst (0.81 V) is comparable to the Pt/C benchmark (\(U_L = 0.8 \, \text{V} \)). The improved activity originates from the additional 0.22 eV stabilization of *OOH due to the presence of the Fe−OH spectator. Simulations of other
oxophilic TMs (see Mn−OH and Cr−OH in Figure 2b) confirm that the presence of the spectator ligand significantly affects *OOH binding; the other ORX adsorbates (i.e., *OH and *O) are largely unaffected.

While the above discussion is limited to the Co active site, we perform additional DFT calculations with Ni, Fe, Cr, and Mn active sites. For each TM, the most stable coverage predicted by the Pourbaix diagram is used (e.g., Cr−OH, Mn−OH). As shown in Figure 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF−Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g., square planar Co vs distorted square pyramidal Cr−OH).

Previous work by Busch et al. has shown that the slope of the scaling line depends on the choice of the DFT functional.60

More interestingly, the presence of the Fe−OH spectator results in a favorable deviation from the above scaling behavior. Specifically, we observe a preferential *OOH stabilization of up to 0.4 eV for various TM active sites (Figure S5). A smaller deviation is observed for strongly binding TMs (e.g., Fe−*OOH, 0.07 eV). In contrast, weakly binding TMs (e.g., Ni−*OOH) are stabilized to a larger extent (0.39 eV). For a given TM active site, the extent of *OOH stabilization also depends on the identity of the spectator. For instance, Mn−OH spectator (purple, Figure 3a) results in systematically higher stabilization than Fe−OH spectator. In all cases, the *O and *OH binding energies do not change significantly (<0.15 eV).

The trends in *OOH stabilization can be explained by the increasing electronegativity of the spectating metal (Mn < Cr < Fe). Spectating metals with lower electronegativity allow for more charge to be localized on the spectator ligand (−OHR). As shown in Figure 2b, the presence of the spectator localizes more charge to the spectator ligand (Figure 3a) to 0.33 (Mn−OH) and Cr−OH spectators.

More interestingly, the presence of the Fe−OH spectator results in a favorable deviation from the above scaling behavior. Specifically, we observe a preferential *OOH stabilization of up to 0.4 eV for various TM active sites (Figure S5). A smaller deviation is observed for strongly binding TMs (e.g., Fe−*OOH, 0.07 eV). In contrast, weakly binding TMs (e.g., Ni−*OOH) are stabilized to a larger extent (0.39 eV). For a given TM active site, the extent of *OOH stabilization also depends on the identity of the spectator. For instance, Mn−OH spectator (purple, Figure 3a) results in systematically higher stabilization than Fe−OH spectator. In all cases, the *O and *OH binding energies do not change significantly (<0.15 eV).

The trends in *OOH stabilization can be explained by the increasing electronegativity of the spectating metal (Mn < Cr < Fe). Spectating metals with lower electronegativity allow for more charge to be localized on the spectator ligand (−OHR). As shown in Figure 2b, the presence of the spectator localizes more charge to the spectator ligand (Figure 3a) to 0.33 (Mn−OH) and Cr−OH spectators. For each TM, the most stable coverage predicted by the Pourbaix diagram is used (e.g., Cr−OH, Mn−OH). As shown in Figure 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF−Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g., square planar Co vs distorted square pyramidal Cr−OH).

While the above discussion is limited to the Co active site, we perform additional DFT calculations with Ni, Fe, Cr, and Mn active sites. For each TM, the most stable coverage predicted by the Pourbaix diagram is used (e.g., Cr−OH, Mn−OH). As shown in Figure 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF−Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g., square planar Co vs distorted square pyramidal Cr−OH).

More interestingly, the presence of the Fe−OH spectator results in a favorable deviation from the above scaling behavior. Specifically, we observe a preferential *OOH stabilization of up to 0.4 eV for various TM active sites (Figure S5). A smaller deviation is observed for strongly binding TMs (e.g., Fe−*OOH, 0.07 eV). In contrast, weakly binding TMs (e.g., Ni−*OOH) are stabilized to a larger extent (0.39 eV). For a given TM active site, the extent of *OOH stabilization also depends on the identity of the spectator. For instance, Mn−OH spectator (purple, Figure 3a) results in systematically higher stabilization than Fe−OH spectator. In all cases, the *O and *OH binding energies do not change significantly (<0.15 eV).

The trends in *OOH stabilization can be explained by the increasing electronegativity of the spectating metal (Mn < Cr < Fe). Spectating metals with lower electronegativity allow for more charge to be localized on the spectator ligand (−OHR). As shown in Figure 2b, the presence of the spectator localizes more charge to the spectator ligand (Figure 3a) to 0.33 (Mn−OH) and Cr−OH spectators. For each TM, the most stable coverage predicted by the Pourbaix diagram is used (e.g., Cr−OH, Mn−OH). As shown in Figure 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF−Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g., square planar Co vs distorted square pyramidal Cr−OH).

While the above discussion is limited to the Co active site, we perform additional DFT calculations with Ni, Fe, Cr, and Mn active sites. For each TM, the most stable coverage predicted by the Pourbaix diagram is used (e.g., Cr−OH, Mn−OH). As shown in Figure 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF−Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g., square planar Co vs distorted square pyramidal Cr−OH).

While the above discussion is limited to the Co active site, we perform additional DFT calculations with Ni, Fe, Cr, and Mn active sites. For each TM, the most stable coverage predicted by the Pourbaix diagram is used (e.g., Cr−OH, Mn−OH). As shown in Figure 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF−Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g., square planar Co vs distorted square pyramidal Cr−OH).

While the above discussion is limited to the Co active site, we perform additional DFT calculations with Ni, Fe, Cr, and Mn active sites. For each TM, the most stable coverage predicted by the Pourbaix diagram is used (e.g., Cr−OH, Mn−OH). As shown in Figure 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF−Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g., square planar Co vs distorted square pyramidal Cr−OH).
site, Fe–OH spectator) at varying distances. As shown in Figure 4a, parallel configurations can be considered as analogues of PMOF-Al with different 1-D metal oxide chains (e.g., substituting Al with Ga or In76), or other similar rod-based MOFs, such as MIL-173.77 Additionally, a pair of angled (37°) porphines is chosen to mimic the topology of the porphyrinic Zr6-oxo cluster MOF, PCN-225.78 The distance between the TMs is varied to illustrate the reticular approach in MOF synthesis;79 we demonstrate the effects of varying the linker size while retaining the same topology. Figure 4a shows a high degree of control on reaction thermodynamics can be achieved by tuning the separation distance between adjacent porphyrin motifs, and the distances of several known MOFs are highlighted with vertical dotted lines. For both the parallel and angled configurations, shorter distances (∼7 Å) enable stronger *OOH stabilization, which suggests a preference toward 4e ORR. Interestingly, TPSSh-D3BJ predicts a range of *OOH binding energies that encompass the 2e ORR optimum (4.2 eV, dashed black line in Figure 4). For the model systems considered here, we find that intrinsic catalytic activity is insensitive to small topological changes in porphyrin orientation (i.e., parallel versus angled). These results show that weakly *OOH binding active sites can be optimized for 2e peroxide synthesis by appropriately choosing the spectator transition metal, optimizing the TM1−TM2 separation, and changing the MOF topology. We acknowledge that these results alone are not conclusive of reaction selectivity; detailed kinetic studies and experimental measurements are necessary to validate our predictions.

By using state-of-the-art DFT calculations, we have demonstrated that porphyrin-based MOFs are an ideal materials platform for rationally designing 3-D active site environments for ORR. To the best of our knowledge, these computational predictions represent the first experimentally synthesizable heterogeneous catalysts (i.e., MOFs) where the 3-D structure of the active site can be intentionally designed to circumvent the *OOH vs *OH scaling relations. In addition to possible electrochemical stability concerns, other factors that impact the efficacy of MOF electrocatalysts, such as charge transport, counterion and substrate diffusion, explicit solvation, etc. represent ongoing research directions in the group. We anticipate that this work will motivate further computational studies and experimental validation of MOF-based electrocatalysts for ORR.

COMPUTATIONAL METHODS

Periodic density functional theory (DFT) calculations are performed using the projector augmented wave method as implemented in the Vienna ab initio simulation package (VASP). All energies are calculated using a 400 eV plane-wave cutoff. Only the Γ-point is sampled owing to the large MOF unit cells. A range of generalized gradient approximation (BEEF-vdW,22 BLYP,24,25 RPBE23) and hybrid (B3LYP,26 HSE06,27,28 and TPSSH57) functionals are used to examine the sensitivity of our results. Dispersion corrections are considered using the DFT-D3 method with Becke–Johnson damping.29–31 Electronic energies are converged to 10−6 eV. All structures are relaxed until the forces are less than 0.03 eV/Å for RPBE and 0.1 eV/Å for HSE06 and TPSSH. A lower convergence threshold is used for the hybrid functionals owing to the high computational costs; differences in binding energies are less than 0.01 eV. Full relaxations are performed for RPBE and HSE06. TPSSH relaxations are performed with HSE06 geometry, only the M−N4 atoms and the adsorbates are allowed to relax. All possible spin states are considered. Implicit solvation corrections are implemented using VASP.56 The finite displacement method (0.015 Å) is used to calculate the entropic corrections and zero-point energies. Bond orders are calculated using the density derived electrostatic and chemical (DDEC) charge method.32,33

ASSOCIATED CONTENT

* Supporting Information The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02889.

Computational details, functional dependency and Van der Waals contributions, binding energy differences, Pourbaix diagrams, spin-state energies, free energy transport, counterion and substrate diffusion, explicit solvation, etc. represent ongoing research directions in the group. We anticipate that this work will motivate further computational studies and experimental validation of MOF-based electrocatalysts for ORR.
corrections, solvent isosurface, implicit solvation effects, stabilization of *OOH, *O, and *OH, H-bond interactions and bond orders, volcano plots, justification of TPSSH-D3BJ, functional comparison for *OOH binding, theoretical limiting potentials, and *OOH vs *OH scaling (PDF)

Atomic Simulation Environment database of DFT-optimized structures calculated using the TPSSH-D3BJ functional (DB)

Details on accessing the data (ZIP)

■ AUTHOR INFORMATION

Corresponding Authors
Samira Siahrostami — Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada; orcid.org/0000-0002-1192-4634; Email: samira.siahrostami@ucalgary.ca

Ambarish Kulkarni — Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States; orcid.org/0000-0001-9834-8264; Email: arulkarni@ucdavis.edu

Authors
Tyler Sours — Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States

Anjili Patel — SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0002-0590-7619

Jens Nørskov — Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; orcid.org/0000-0002-4427-7728

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpclett.0c02889

Author Contributions
#T.S. and A.P. contributed equally to this work.

Funding
T.S. and A.K. are partially supported by startup funds provided by University of California, Davis. A.P., A.K., S.S., and J.N. acknowledge partial support from the Toyota Research Institute. A.P. acknowledges partial support from the National Science Foundation Graduate Research Fellowship Program.

Notes
The authors declare no competing financial interest.

DFT optimized structures are available as ase-db files: https://github.com/kul-group/kul-repository/tree/main/repo_2020_JPCL_Circumventing_Scaling.

■ ACKNOWLEDGMENTS

We are grateful to the computational resources provided by Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation grant number ACI-1548562 and National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

■ REFERENCES

